| Question |  | Mark | Acceptable answers | Notes | Total |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 |  | M1 | zinc |  | 1 |
|  |  | M2 | more reactive (than iron) | Accept higher in reactivity series I very reactive / more reactive than metal underneath / reacts with air or water in preference to iron Reject rusts | 1 |
|  |  | M3 | aluminium / duralumin / titanium |  | 1 |
|  |  | M4 | Iow density | Ignore light / strong / malleable | 1 |
|  |  | M5 | copper |  | 1 |
|  |  | M6 | (good electrical) conductor | Ignore ductile / conductor of heat | 1 |
|  |  | M7 | iron / steel | Reject stainless steel / cast iron | 1 |
|  |  | M8 | strong | Accept hard / tough / durable Ignore malleable | 1 |
|  |  |  |  | 1,6,8 dependent on M1,3,5,7 ainless steel given in M7, M ed |  |




| Question | Mark | Acceptable answers | Notes | Total |
| :--- | :---: | :---: | :---: | :---: |
| $\mathbf{3}$ | $\mathbf{b}$ | M1 | only single bonds / no double bonds <br> (between carbon atoms) | If single bonds alternative <br> chosen, then must contain only / <br> solely /alone or equivalent | 1


| Question | Mark | Acceptable answers | Notes | Total |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |
| $\mathbf{3}$ | $\mathbf{c}$ |  | M1 | alkane(s) |


| Question | Mark | Acceptable answers | Notes | Total |  |
| :--- | :---: | :---: | :--- | :---: | :---: |
|  |  |  |  |  |  |
| $\mathbf{3}$ | $\mathbf{d}$ |  | M1 | two carbon atoms joined together <br> by single bond | $\mathbf{1}$ |
|  |  | M2 | rest of structure correct | Must show 6 single bonds to H <br> atoms <br> lependent on M1 | $\mathbf{1}$ |
|  |  |  |  | lgnore names, non-displayed and <br> general formulae |  |


| Question | Mark | Acceptable answers | Notes | Total |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |
| $\mathbf{3}$ | $\mathbf{e} \mathbf{i}$ | M 1 | $\mathrm{C}_{4} \mathrm{H}_{10}$ | Allow $\mathrm{H}_{10} \mathrm{C}_{4}$ |  |  |  |  |  |
| $\mathbf{1}$ |  |  |  |  |  |  |  |  |  |
| Question |  |  |  |  |  | Mark | Acceptable answers | Notes | Total |


| $\mathbf{3}$ | $\mathbf{e}$ | $\mathbf{i i}$ | M1 | isomers |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{1}$ |  |  |  |  |  |


| Question | Mark | Acceptable answers | Notes | Total |  |  |
| :---: | :---: | :---: | :--- | :---: | :---: | :---: |
|  |  |  |  |  |  |  |
| $\mathbf{3}$ | $\mathbf{f}$ |  | M1 | repeat unit showing single C-C bond <br> and four C-H bonds | Accept one or any multiples, eg <br> four carbon atoms |  |
|  |  | M2 | extension bonds and subscript n | Accept extension bonds as - or - <br> - <br> Balancing for n must be correct <br> CQ on M1 | $\mathbf{1}$ |  |


| Question | Mark | Acceptable answers | Notes | Total |
| :--- | :---: | :--- | :--- | :---: |
| $\mathbf{3}$ | $\mathbf{g}$ | $\mathbf{i}$ | M1 | condensation |


| Question | Mark | Acceptable answers | Notes | Total |  |
| :--- | :---: | :--- | :--- | :---: | :---: |
|  |  |  |  |  |  |
| $\mathbf{3}$ | $\mathbf{g}$ | ii | M1 | cross in 3rd box |  | | lf crosses in more than 2 boxes, |
| :--- |


| Question | Mark | Acceptable answers | Notes | Total |  |
| :--- | :---: | :---: | :--- | :--- | :---: |
|  |  |  |  |  |  |
| $\mathbf{4}$ | $\mathbf{a}$ | M1 | all green / green at bottom / green <br> spreads out / water is green | re cloudy |  |
|  |  | M2 | crystals smaller/ disappeared ' break up <br> / disintegrate | lgnore dissolved | $\mathbf{1}$ |
|  |  |  |  | ct bubbles <br> lgnore water level drops |  |


| Question | Mark | Acceptable answers | Notes | Total |
| :--- | :---: | :---: | :---: | :---: |
| $\mathbf{C}$ |  |  |  |  |
| $\mathbf{4}$ | $\mathbf{b}$ | M1 | diffusion |  |


| Question | Mark | Acceptable answers | Notes | Total |  |
| :--- | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |
| $\mathbf{4}$ | $\mathbf{c}$ | M1 | colour spreads faster / more spread <br> out / more is green <br> l crystals dissolve faster / diffusion <br> is faster | ct mention of reaction | $\mathbf{1}$ |
|  |  | M2 | particles/ions/molecules move <br> faster/more energy | Ignore collisions | $\mathbf{1}$ |


| Question | Mark | Acceptable answers | Notes | Total |  |  |
| :--- | :---: | :---: | :--- | :--- | :---: | :---: |
|  |  |  |  |  |  |  |
| $\mathbf{4}$ | d | M1 | (add) sodium hydroxide (solution) | Accept other Group 1 hydroxide, <br> eg potassium hydroxide <br> Accept calcium hydroxide (solid) <br> but not limewater | $\mathbf{1}$ |  |
|  |  | M2 | (test gas evolved with damp) red <br> litmus paper | Allow UI or neutral litmus instead <br> of red litmus | $\mathbf{1}$ |  |
|  |  | M3 | turns blue | Accept purple only if Ul used <br> Accept pH $>7$ or specified <br> 7 only if Ul used <br> If definite statement that the <br> indicator is put into solution then <br> M3 cannot be scored | $\mathbf{1}$ |  |


| Question | Mark | Acceptable answers | Notes | Total |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |
| $\mathbf{5}$ | $\mathbf{a}$ | M1 | gain of oxygen / increase in <br> oxidation number / loss of electrons | $\mathbf{1}$ |  |



| Question | Mark | Acceptable answers | Notes | Total |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |
| $\mathbf{5}$ | b | ii | M1 | hydrogen (ion) /(hydr)oxonium <br> (ion)/ $\mathrm{H}^{+} /$proton $/ \mathrm{H}_{3} \mathrm{O}^{+}$ |  |


| Question | Mark | Acceptable answers | Notes | Total |  |  |
| :--- | :---: | :---: | :--- | :--- | :--- | :--- |
| $\mathbf{5}$ | b | iii | M1 | named indicator <br> OR named metal carbonate or or <br> hydrogencarbonate <br> OR named metal between Mg and H <br> in reactivity series | Reject phenolphthalein / red <br> litmus <br> Accept limestone / marble (chips) | $\mathbf{1}$ |
|  |  | M2 | correct final colour of indicator <br> OR effervescence / fizzing / bubbles | If Ul, accept red/orange/yellow <br> lgnore gas given off <br> If <br> effervescence/fizzing/bubbles, no <br> then allow correct gas test (ie <br> gas pops with burning splint or <br> limewater turns milky, CQ on <br> compound named in M1 | $\mathbf{1}$ |  |


| Question | Mark | Acceptable answers | Notes | Total |  |
| :--- | :--- | :--- | :--- | :--- | :---: |
|  |  |  |  |  |  |
| $\mathbf{5}$ | $\mathbf{c}$ |  | M1 | increases / gets heavier |  |
|  |  |  | M2 | copper formed/ sticks to it / copper <br> plates |  |
| Must be copper, not copper ions <br> M2 independent of M1 unless <br> contradictory | $\mathbf{1}$ |  |  |  |  |


| Question | Mark | Acceptable answers | Notes | Total |  |
| :--- | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{5}$ | d | $\mathbf{i}$ | M1 | less reactive (than magnesium) <br> l below magnesium in reactivity <br> series | Reject less reactive than <br> magnesium ions <br> Reject copper ions less reactive |


|  |  |  |  | Allow magnesium more <br> reactive/higher in reactivity <br> series (than copper) |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |


| Question | Mark | Acceptable answers | Notes | Total |  |
| :--- | :--- | :--- | :--- | :--- | :---: |
|  |  |  |  |  |  |
| $\mathbf{5}$ | d | ii | M1 | blue | lgnore dark / pale |
|  |  |  | M2 | colourless / pale(r) blue | lgnore clear <br> If pale blue in M1, then M2 must <br> be colourless or paler blue |
|  |  |  |  | Ignore bubbles <br> If precipitate mentioned, then <br> MAX 1 | $\mathbf{1}$ |


| Question | Mark | Acceptable answers | Notes | Total |  |
| :--- | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |
| $\mathbf{6}$ | $\mathbf{a}$ |  | M1 | $\mathrm{C}_{n} \mathrm{H}_{2 n}$ |  |



| Question | Mark | Acceptable answers | Notes | Total |  |
| :--- | :---: | :---: | :---: | :--- | :---: |
|  |  |  |  |  |  |
| $\mathbf{6}$ | c |  | M1 | yellow / orange | lgnore brown <br> Reject red and any other colours |
|  |  |  | M2 | colourless / decolorised | lgnore clear |


| Question | Mark | Acceptable answers | Notes | Total |  |
| :--- | :---: | :---: | :--- | :--- | :---: |
|  |  |  |  |  |  |
| $\mathbf{6}$ | $\mathbf{d}$ | $\mathbf{i}$ | M1 | water / steam / $\mathrm{H}_{2} \mathrm{O}$ |  |
|  |  |  | M2 | phosphoric acid | re dilute / concentrated | $\mathbf{1} 9$


| Question | Mark | Acceptable answers | Notes | Total |  |
| :--- | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |
| $\mathbf{6}$ | $\mathbf{d}$ | ii | M1 | oxidation / reduction / redox |  |


| Question | Mark | Acceptable answers | Notes | Total |  |
| :--- | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |
| $\mathbf{6}$ | d | iii | M1 | $\mathrm{CH}_{3} \mathrm{COOCH}_{2} \mathrm{CH}_{3} / / \quad \mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}$ <br> more detailed formula | Ignore $\mathrm{H}_{2} \mathrm{O}$ <br> Accept $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$ |
|  |  |  | M2 | ester | $\mathbf{1}$ |


| Question | Mark | Acceptable answers | Notes | Total |  |
| :--- | :---: | :---: | :--- | :--- | :---: |
|  |  |  |  |  |  |
| $\mathbf{7}$ | $\mathbf{a}$ | $\mathbf{i}$ | M1 | air | Accept atmosphere |$|$| $\mathbf{1}$ |
| :--- |


| Question |  |  | Mark |  | Notes | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 7 | a | ii | M1 |  | all species correct | 1 |
|  |  |  | M2 | $\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightleftharpoons 2 \mathrm{NH}_{3}$ | balancing Accept multiples Accept $\rightarrow$ instead of $\rightleftharpoons$ lependent on M1 Ignore state symbols | 1 |
|  |  |  |  |  | If all species correct but either or both of + and $\rightleftharpoons$ missing than award M1 but not M2 |  |



| Question |  |  | Mark | Acceptable | Notes | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 7 | c | i | M1 | cooled / temperature decreased | re compressed | 1 |
|  |  |  | M2 | liquefied / condensed / becomes a liquid | Reject liquidised re references to melting an ts / fractional distillation | 1 |


| Question | Mark | Acceptable answers | Notes | Total |
| :--- | :---: | :---: | :---: | :---: |
| $\mathbf{7}$ | $\mathbf{c}$ | $\mathbf{i i}$ | M1 | recycled / recirculated / put back <br> into reactor |


| Question | Mark | Acceptable answers | Notes | Total |  |
| :--- | :---: | :---: | :---: | :--- | :---: |
|  |  |  |  |  |  |
| $\mathbf{7}$ | $\mathbf{d}$ | $\mathbf{i}$ | M1 | ammonium sulphate |  |
|  |  |  | M2 |  | $\mathbf{1}$ |
|  |  |  | M3 | $2 \mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$ | formula of ammonium sulphate |
|  | everything correct <br> lgnore state symbols <br> M3 dep on M2 | $\mathbf{1}$ |  |  |  |


| Question | Mark | Acceptable answers | Notes | Total |  |
| :--- | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |
| $\mathbf{7}$ | $\mathbf{d}$ | ii | M1 | neutralisation / proton transfer / <br> acid-base |  |


| Question | Mark | Acceptable answers | Notes | Total |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |
| $\mathbf{8}$ | $\mathbf{a}$ |  | M1 | exothermic |
| $\mathbf{l}$ |  |  |  |  |


| Question | Mark | Acceptable answers | Notes | Total |  |
| :--- | :---: | :---: | :--- | :--- | :---: |
|  |  |  |  |  |  |
| $\mathbf{8}$ | $\mathbf{b}$ |  | M1 | shared electron(s) (between atoms) | Reject between molecules |
|  |  |  | M2 | two/ pair (of electrons) / attracted <br> to nuclei (of atoms) | lependent on M1 |



| Question | Mark | Acceptable answers | Notes | Total |  |
| :--- | :---: | :---: | :---: | :--- | :---: |
|  |  |  |  |  |  |
| $\mathbf{8}$ | $\mathbf{d}$ |  | M1 | dot-and-cross pair between O and <br> both H atoms | Allow any combinations of dots <br> and crosses <br> lgnore inner shell of oxygen <br> Element symbols not needed, but <br> if wrong then no marks <br> -bonding electrons do not |
|  |  | M2 | four other electrons around O <br> AND no more electrons around H <br> aired <br> M2 dependent on M1 | $\mathbf{1}$ |  |


| Question | Mark | Acceptable answers | Notes | Total |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |
| $\mathbf{8}$ | e |  | M1 | (bonds broken) $1368 /(2 \times 436)$ |  |
| $\mathbf{1}$ |  |  |  |  |  |


|  |  |  | +496 |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :---: |
|  |  |  | M2 | (bonds formed) $1852 / 4 \times 463$ |  | $\mathbf{1}$ |
|  |  | M3 | $-484(\mathrm{~kJ} / \mathrm{mol}$ or kJ ) | Correct final answer scores 3 <br> marks <br> 484 or +484 scores 2 marks <br> lgnore units <br> M3 CQ on (M1 - M2) | $\mathbf{1}$ |  |


| Question | Mark | Acceptable answers | Notes | Total |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |
| $\mathbf{8}$ | $\mathbf{f}$ |  | M1 | reactants/ (2) $\mathrm{H}_{2}+\mathrm{O}_{2}$ shown above <br> $2 \mathrm{H}_{2} \mathrm{O}$ | e-symbols not needed <br> lgnore curves, vertical lines, $\Delta H$ <br> data |  |


| Question | Mark | Acceptable answers | Notes | Total |
| :--- | :---: | :--- | :--- | :---: |
|  |  |  |  |  |
| $\mathbf{8}$ | $\mathbf{g}$ |  | M1 | decreases / slower |
|  |  |  | M2 | decreases / closer |


| Question |  | Mark | Acceptable answers |  |  | Notes | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 8 | h | M1 | $\begin{aligned} & \mathrm{CuSO}_{4}(\mathrm{~s}) \\ & \mathrm{CuSO}_{4} .5 \mathrm{H}_{2} \mathrm{O}(\mathrm{~s}) \end{aligned}+$ | $5 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ | $\rightarrow$ | $\mathrm{CuSO}_{4}$ AND <br> both correct $\quad \mathrm{CuSO}_{4} .5 \mathrm{H}_{2} \mathrm{O}$ | 1 |
|  |  | M2 |  |  |  | $\mathrm{H}_{2} \mathrm{O}$ AND consequentially correct balancing <br> Accept $\rightleftharpoons$ in place of $\rightarrow$ | 1 |
|  |  | M3 |  |  |  | All state symbols correct, dependent on correct formulae (including $\mathrm{CuSO}_{4} .2 \mathrm{H}_{2} \mathrm{O}$ etc) | 1 |


| Question |  | Mark | Acceptable answers | Notes | Total |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 9 | a | M1 | atoms of same element/ with same atomic number <br> / with same number of protons | Do not award M1 if no mention of atoms <br> re same number of electror Reject different number of electrons <br> ct compounds / molecules | 1 |
|  |  | M2 | different mass numbers / different numbers of neutrons | ame mass number / atomic mass as contradiction of M2 | 1 |
|  |  |  |  | Accept amount / quantity in place of number |  |


| Question |  |  | Que Acceptable answers |  |  |  | answers | Notes | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 9 | b | i | $\begin{aligned} & \text { M1 } \\ & \text { M2 } \\ & \text { M3 } \end{aligned}$ | 29 | $65 \quad 29$ |  | 34 | M1 is for BOTH 29 values | 1 |
|  |  |  |  |  |  |  | M2 is for 34 | 1 |
|  |  |  |  |  |  |  | M3 is for 65 | 1 |



| Question | Mark | Acceptable answers | Notes | Total |  |
| :--- | :--- | :--- | :--- | :---: | :---: |
|  |  |  |  |  |  |
| $\mathbf{9}$ | $\mathbf{c}$ |  | M1 | carbon / C |  |
|  |  |  | M2 | 12 |  |


|  | \|l |  | Ignore (relative) atomic mass |  |
| :--- | :--- | :--- | :--- | :--- | :--- |



| Question |  |  | Mark | Acceptable answers | Notes | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 9 | e |  | M1 | variable valency/ oxidation state | Accept more than one combining |  |
|  |  |  | M2 | form coloured (compounds/ solutions) | power / differently charged ions / $\mathrm{Cu}^{+}$and $\mathrm{Cu}^{2+}$ |  |
|  |  |  |  | form complexes / complex ions act as catalysts |  | 2 |
|  |  |  |  |  | Any two for 1 mark each |  |


| Question |  |  | Mark Acceptable answers |  | Notes | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 9 | f | i | M1 | (from) green | Ignore dark / pale <br> Reject any other colour <br> A single correct colour with no indication of whether it is the starting or final colour does not score either M1 or M2 | 1 |
|  |  |  | M2 | (to) black |  | 1 |
|  |  |  | M3 | $\mathrm{CuCO}_{3}(\mathrm{~s}) \rightarrow \mathrm{CuO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g})$ | reactants AND products AND correct balancing Accept multiples | 1 |
|  |  |  | M4 |  | all state symbols correct <br> lependent on correct formula | 1 |


| Question |  |  | Mark | Acceptable answers | Notes | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 9 | f | ii | M1 | $\mathrm{CuO}+2 \mathrm{HCl} \rightarrow \mathrm{CuCl}_{2}+\mathrm{H}_{2} \mathrm{O}$ | reactants | 1 |
|  |  |  | M2 |  | products | 1 |
|  |  |  | M3 |  | balancing <br> lependent on M1 and M2 | 1 |


|  |  |  |  |  | re state symbols |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |


| Question | Mark | Acceptable answers | Notes | Total |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |
| $\mathbf{9}$ | g |  | M 1 | $\mathrm{Cu}_{2} \mathrm{O}$ |  |  |


| Question | Mark | Acceptable answers | Notes | Total |  |
| :---: | :---: | :---: | :--- | :--- | :---: |
|  |  |  |  |  |  |
| $\mathbf{1 0}$ | a | M1 | filter / centrifuge and decant | Accept allow (precipitate) to <br> settle and pour off water | $\mathbf{1}$ |
|  |  |  | M2 | wash / rinse | $\mathbf{1}$ |
|  |  | M3 | warm / heat / leave to dry/to <br> evaporate/in warm place | Accept mention of drying with <br> filter paper / Bunsen burner / <br> hairdryer / oven | $\mathbf{1}$ |


| Question | Mark | Acceptable answers | Notes | Total |  |
| :--- | :---: | :--- | :--- | :---: | :---: |
|  |  |  |  |  |  |
| $\mathbf{1 0}$ | b | i | M1 | $5.55 \div 111$ |  |
| M2 | 0.05 | re units <br> Correct answer scores both <br> marks | $\mathbf{1}$ |  |  |


| Question | Mark | Acceptable answers | Notes | Total |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |
| $\mathbf{1 0}$ | b | ii | M1 | $0.05 /$ answer to (b)(i) |  |


| Question | Mark | Acceptable answers | Notes | Total |  |  |
| :---: | :---: | :---: | :--- | :---: | :---: | :---: |
|  |  |  |  |  |  |  |
| 10 | b | iii | M1 | 136 |  |  |
| re units | $\mathbf{1}$ |  |  |  |  |  |


| Question | Mark | Acceptable answers | Notes | Total |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :---: |
|  |  |  |  |  |  |  |
| $\mathbf{1 0}$ | b | iv | M1 | $0.05 \times 136$ / answer to (b)(ii) <br> answer to b(iii) | $\mathbf{1}$ |  |
|  |  | M2 | $6.8 \times$Correct answer CQ on (b)(ii) and <br> b(iii) scores both marks <br> If (b)(ii) incorrect, accept 6.8 if <br> evidence of using mass ratios <br> lgnore units | $\mathbf{1}$ |  |  |


| Question |  |  | Mark | Acceptable answers | Notes | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 10 | c | i | M1 | $0.04(00) \div 0.5$ |  | 1 |
|  |  |  | M2 | $0.08 \mathrm{dm}^{3}$ | M2 dep on correct method for M1 (eg 0.4 $\div 0.5=0.8 \mathrm{dm}^{3}$ scores M2 but not M1) <br> Answer of $0.08 \mathrm{dm}^{3}$ scores M1 and M2 | 1 |
|  |  |  | M3 | $80\left(\mathrm{~cm}^{3}\right)$ | Unit not needed M3 CQ on M2 Correct final answer scores 3 marks | 1 |


| Question | Mark | Acceptable answers | Notes | Total |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |
| $\mathbf{1 0}$ | c | ii | M1 | $\left(0.02 \times 24000=480\left(\mathrm{~cm}^{3}\right)\right.$ |  |
| $\mathbf{l}$ |  |  |  |  |  |

PAPER TOTAL 120 MARKS

